Petoi Doc Center
🇺🇸English
🇺🇸English
  • Welcome to Petoi Doc Center
  • Getting Started Guide
  • 🙋‍♂️FAQ(Frequently Asked Questions)
  • Petoi robot joint index
    • Joint Pins on NyBoard
      • Nybble
      • Bittle
    • Joint Pins on BiBoard V0
      • Bittle X
      • Bittle X+Arm
    • Joint Pins on BiBoard V1
      • Bittle X
      • Bittle X+Arm
      • Nybble Q
  • Bluetooth Connection
    • BiBoard
    • NyBoard
  • Upload Firmware
    • NyBoard
    • BiBoard V0
    • BiBoard V1
  • Joint Calibration
  • Infrared Remote
    • Remote Controller
  • Mobile App
    • Introduction
    • Calibrator
      • Nybble
      • Bittle
    • Controller
  • Desktop APP
    • Introduction
    • Firmware Uploader
      • NyBoard
      • BiBoard V0
      • BiBoard V1
    • Joint Calibrator
      • NyBoard Preparation
      • BiBoard Preparation
      • Nybble
      • Bittle / Bittle X
        • Bittle (NyBoard)
        • Bittle X (BiBoard V0)
        • Bittle X (BiBoard V1)
      • Bittle X+Arm
        • BiBoard V1
        • BiBoard V0
    • Skill Composer
      • NyBoard Connection
      • BiBoard Connection
      • Interface
        • Nybble
        • Bittle / Bittle X
        • Bittle X+Arm
    • Tools
  • Block-based programming
    • Petoi Coding Blocks
      • NyBoard Preparation
      • BiBoard Preparation
    • Block-based Coding Curriculum - Learn Quadruped Robotics for Beginners
    • Python coding mode in Mind+
    • Generic Arduino Uno Blocks
    • Install Mind+ on Chromebook
  • Arduino IDE
    • Upload Sketch for NyBoard
    • Upload Sketch for BiBoard
    • Calibrate the joints with Arduino IDE
    • Serial Monitor
    • C++ Curriculum: Learn Quadruped Robotics for Beginners
    • Install Arduino IDE on Chromebook
  • Free Curriculum
    • 📚Download
  • APIs
    • 🖇️Serial Protocol
      • Feedback servos
      • Nested task queue and signal generator
    • 🐍Python API
    • 🐛8266 MicroPython controller
      • Run MicroPython on ESP8266
      • Setup WebREPL
      • Using the ESP-NOW protocol
    • 🦎8266 Arduino C Controller
    • ©️C++ API
    • 🍓Raspberry Pi serial port as an interface
      • For BiBoard V1
    • 💻Set up Development Environment on Chromebook
    • 🤖ROS
  • Nyboard
    • Overview
    • NyBoard V1_0
    • NyBoard V1_1 & NyBoard V1_2
  • BIBOARD
    • BiBoard V0 Guide
    • BiBoard Extension Hat
    • Demo Applications
      • 1.GPIO port
      • 2.Serial port
      • 3.Analog-digital converter
      • 4.Digital-Analog Converter
      • 5.EEPROM (Electrically Erasable Programmable read only memory)
      • 6.Gyro IMU(MPU6050)
      • 7.Infrared remote control
      • 8.PWM(Pulse Width Modulation)
      • 9.Servo(under construction)
      • 10.Classic Bluetooth serial port SPP
      • 11.Bluetooth low energy (BLE) serial port pass-through
      • 12.File system SPIFFS
      • 13.Add hardware partition configuration option in Arduino IDE
      • 14.Play MP3
      • 15.The usage of Wi-Fi OTA(Over-The-Air)
    • BiBoard V1 Guide
  • Communication Modules
    • Introduction (For NyBoard)
    • USB Uploader (CH340C or CH343G)
    • Dual Mode Bluetooth
    • WiFi module ESP8266
      • ESP8266 + Python Scripts Implement wireless crowd control
  • Extensible Modules
    • Introduction
    • MU Camera
    • Ultrasonic Sensor
    • Light Sensor
    • Touch Sensor
    • Gesture Sensor
    • PIR Motion Sensor
    • IR Distance Sensor
    • Voice Command Module
    • Petoi AI Vision Module
    • Advanced development and application of AI vision modules
      • Model Training
      • Model quantification
      • Model deployment
      • Training on the COCO DIY dataset
    • Robot Arm
      • Upgrade your older Bittle/Bittle X for the robotics arm gripper
    • 🎮Joystick with Micro:Bit
  • Applications
    • Melody Creation
    • Skill Creation
    • OpenCat Imitation Tutorial
    • Programmable Puppet Character
    • Tutorial for simulating Bittle In Isaac Sim
  • History
    • Upload Sketch For NyBoard (software 1.0)
  • Technical Support
    • 💾Supporting Application and Software
    • 🔧Burn Bootloader for NyBoard
    • 🛠️Useful Tools
    • 🔋Battery
  • Useful Links 🕸
    • 🔭Home of Petoi Robots
    • 🛒Shop Coding Robots
    • 💿GitHub of OpenCat
    • 🎪PetoiCamp (Forum)
    • 📽️Petoi Robot Videos
    • 📬Users' repositories
Powered by GitBook
On this page
  • 1. Preparation
  • 2. Keymap
  • 3. Check out the following featured motions

Was this helpful?

Export as PDF
  1. Infrared Remote

Remote Controller

It's simple to control Nybble / Bittle via the remote controller.

PreviousJoint CalibrationNextIntroduction

Last updated 3 months ago

Was this helpful?

1. Preparation

The remote doesn't require pairing. Make sure its plastic insulation sheet is removed, and point the remote‘s transmitter to the receiver on the robot's back when operating. If the robot doesn't respond, you can use your phone‘s camera to check the transmitter. If it doesn't blink when clicking a button, you need to change its battery. If it blinks, it may indicate the program on the robot is not configured correctly.

2. Keymap

Only the position of the buttons matters, though those symbols can help you remember the functionalities. It's better to define position-related symbols to refer to those keys, such as K00 for the 1st row and 1st column, and K32 for the 4th row and 3rd column.

Abbreviations for key definitions can reduce SRAM usage. Due to the limited keys of a physical remote, you can change the definitions for convenience.

The following map is just an illustration. Check the #define KXX commandin OpenCat/src/infrared.h for the actual key definitions in effect. They are also open to your customization.

We also made a customized remote panel for future batches. Previous users can download the design file and print it on A4 paper.

3. Check out the following featured motions

  • Rest puts the robot down and shuts down the servos. It's always safe to click it if Nybble is doing something awkward.

  • Balance is the neutral standing posture. You can push the robot from the sides and it will try to recover. You can test its balancing ability on a fluctuating board. Balancing is activated in most postures and gaits.

  • Pressing F/L/R will make the robot move forward/left/right

  • B will make the robot move backward

  • Calibrate puts the robot into calibration posture and turns off the gyro

  • Stepping lets the robot step at the original spot

  • Crawl/walk/trot are the gaits that can be switched and combined with the direction buttons

  • Buttons after trot are preset postures or other skills

  • Gyro will turn on/off the gyro for self-balancing. Turning off the gyro can accelerate and stabilize the slower gaits. But it’s NOT recommended for faster gaits such as trot. Self-righting will be disabled because the robot no longer knows it's flipped.

  • Different surfaces have different friction and will affect walking performance. The carpet will be too bushy for the robot's short legs. It can only crawl (command kcr) over this kind of tough terrain.

  • You can pull the battery pack down and slide along the longer direction of the belly. That will tune the center of mass, which is very important for walking performance.

  • When the robot is walking, you can let it climb up/down a small slope (<10 degrees)

  • If the robot keeps beeping after you connect the USB uploader, with numbers printed on the serial monitor, it’s the low voltage alarm being triggered. You need to power the mainboard with the battery to pass the threshold.

  • The servos are designed to be driven by internal gears. Avoid rotating the servos too fast from the outside.

  • Don’t keep the robot running for too long. It will overheat the electronics and reduce the servos’ life span.

  • If you feel something is wrong with the robot, press the reset button on the main board to restart the program.

  • Be kind as if you were playing with a real kitten/puppy. (^=◕ᴥ◕=^)

2MB
newPanel.pdf
pdf